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Abstract Employing a widely used model for the dynamics of irreversible processes, we 
introduce cuwature into the Euclidean state space of fluctuating irreversible processes in 
(quasi-)linear domains via non-integrable coordinate transformations. The Riemannian state 
space thus obtained pertains to the nonlinear domain of far from equilibrium situations. This 
technique makes it possible to extend systematically, without the need for adding stochastic 
assumptions, both the path integral expression for the conditional probability and the Fokker- 
Planck equation, from (quasi-)linear to nonlinear regimes. Our res& agree with those obtained 
by Graben and Green which are based on stochastic considerations. me connection with other 
rigorous results in the literature is also discussed. 

1. Introduction 

Long ago it was proposed [I ]  that in presence of fluctuations, irreversible processes can 
be represented by Markov processes governed by a Fokker-Planck equation. Following 
this proposition and employing a widely used model (introduced in the next section) for 
the dynamics of irreversible processes, Onsager and Machlup [2] were able to obtain an 
expression for the conditional probability relating two macroscopic states as a functional 
integral. This path integral representation, being perhaps the most seminal expression of 
the role of fluctuations in non-equilibrium phenomena, was limited to the so-called linear 
regime of near equilibrium situations in which kinetic coefficients are state independent 
and the thermodynamic forces are linear in the deviations of the macroscopic (extensive) 
variables from their equilibrium values. 

The path integral concept was later extended (within the context of the same model) 
to nonlinear irreversible processes by Grabert and Green [3] through making a hypothesis 
analogous to that of Onsager and Machlup about the short-time conditional probability in 
nonlinear domains. 

Recently, employing the same model, a canonical operator formulation of irreversible 
processes was proposed by one of us (MM) [4,5] which, among other features, had a 
path integral representation that could be obtained just as customarily as done in quantum 
mechanics. The path integal expression for the conditional probability derived in this 
manner [4] pertained to the quasi-linear domain which, by definition, is slightly more 
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general than the linear domain in that the constraint on the thermodynamic forces is relaxed. 
This approach for obtaining the functional integral, apart from being more systematic, has 
the advantage of doing away with explicit stochastic assumptions, in particular about the 
short-time conditional probability. It is our purpose to pursue that line of approach to 
obtain the conditional probability in nonlinear regimes. To this end, we transform the flat 
state space of quasi-linear irreversible processes to a curved state space pertaining to the 
nonlinear domain, thereby also transforming the corresponding conditional probabilities. We 
do this by making use of non-integrable coordinate transformations (introduced in section 3). 
which are a standard means of generating curvature (and torsion) from a Euclidean space, 
particularly in the study of crystal defects 161. In the spirit of the operator formulation of 
non-equilibrium phenomena developed in [4,S], we mention in passing that our technique 
is principally a refined version of thatemployed in quantum mechanics for passage from 
the path integral representation in flat to curved space [71. The resulting expression for the 
nonlinear conditional probability will then be used to derive the Fokker-Planck equation 
systematically. Our results agree with those obtained by Grabert and Green 131 using a 
completely different scheme based on stochastic assumptions. 

In the literature [8,9], there exist similar rigorous results by various authors on the 
derivation of such probability function&. The work presented here is yet another attempt 
(via a completely different approach) in this direction. However, our result for the 
conditional probability functional (equations (5.94 b)) differs from that  given^ in references 
[8,9] in the last term of (5.9b) where they obtain k2R/6 .  An explanation for this difference, 
which is also apparent in the work of Grabert and Green, is given by the latter in (31. Our 
procedure is therefore to be contrasted with earlier proposals for constructing probability 
functionals in state spaces with curvature which can be found in the literature, most notably 
in the work of [8]. 
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2. Conditional probability for the flat state space of quasi-linear domains 

Consider a system described by a set (4') ; i = L2,. . . . r;  of relevant macroscopic 
extensive variables. This set forms the coordinates for the thermodynamic state (or 
configuration) space whose origin we take to represent the equilibrium state. The entropy 
S(q ' )  is maximal at equilibrium so that xi(0) = 0 where x; = ais are the so-called 
thermodynamic forces conjugate to 4'. These forces have a restoring character and drive 
the system towards equilibrium by causing flows q' = dq'/dt. The phenomenological 
relationship between the forces and the flows (summation convention implied hereafter) 

$ = e  x, . (2.1) 
defines the dynamical model mentioned in the introduction (and employed by us here), 
applicable to a variety of irreversible phenomena In (2.1) the matrix t ' j ,  which is 
positive semi-definite and symmeuic, represents Onsager's kinetic coefficients [IO]. In near 
equilibrium situations (or the linear domain) t'j  are constant and x; are linear functions of 
q', wherease in far from equilibrium situations (or the nonlinear domain) t'j and xi may 
be arbitrary functions of the state 4'. 

The entropy S(q'), being a function of the state, is clearly a scalar under transformations 
in the thermodynamic configuration space. For the covariance of the formulation to be 
manifest under such transformations, it is customary [3,5] to introduce a Riemannian 
geometry in the state space by taking the inverse kinetic coefficients t t j  (satisfying 
&t'j = 6;) to play the role of the metric components in the coordinate basis representation. 
We can thus regard q' ( x i )  as a contravariant (covariant) vector in the usual manner. Of 
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course, in the linear and quasi-linear domains, because t i j  are constant, the state space will 
be Euclidean and, hence, flat. 

The functional integral for the conditional probability in the quasi-linear regime derived 
in [4], when trivially generalized to a.multi-dimensional state space reads ( t  e 2'): 

where a prime denotes partid differentiation, x i  = f?j% and 

(2 .2~)  

(2.2b) 

Here t' - t = E N ,  L = det(!'j) and d'qf,) = n:=, dqi,). The time integral in ( 2 . 2 ~ )  is 
sometimes called the thermodynamic action which may be written in discretized form as 
E N L:(qln-,), 4;")) with qfo) = q' and q(N) = 4' and 

1 .~ i j i  i k .  
G(qf,- i ) ,  Gin) )  = G~ eij(qfn) - 

.C> is the so-called [discretized) thermodynamic Lagrangian, evaluated at the prepoint q:n-I, 
of the interval Aq& = q(n,-qf,-l,. The suffix '<' is used to emphasize prepoint evaluation 
and we use the shorthand notation = ~ ~ ( q ( , - ~ ) ) ,  etc. We have deliberately chosen 
a prepoint expansion for the action to make direct contact with the result of Grabert and 
Green [ 3 ]  for the conditional probability. The prepoint action gives ready access to the 
evolution of the system backward in time as is evident from the normalization condition 
for the short-time conditional probability W: 

- ~ ~ ( n - l ) ) ( q ( ~ )  - q(n-1 )  - E X ( ~ - ~ ) )  + 5 x L . i ( n - l )  . 
(2.3) 

r i  
e-0 lim / W:(qin-,), ~c.-I); 46). t ( d  d qn-,) 

6 
=~ lim [ L(4ntk)r]- ' /2  /" exp { -iL:(qin, - Aqf",, qf,))} d'Aq6, = 1 . 

6-0 

(2.4) 
This is readily proved using (2.3) and the well known properties of Gaussian integrals listed 
in the appendix. The finite-time conditional probability, thus, satisfies the normalization 

with qfo) = q' and qfN)  = 2, of course. As mentioned in the introduction, the result 
( 2 . 2 ~ )  for the conditional probability does not rest on explicit stochastic assumptions. We 
shall demonstrate, in the following sections, that it is possible to extend it directly to the 
nonlinear domain (where e'' are no longer constant) by transforming, the invariant property 
of normalization (2.5), from flat to curved configuration space via non-integrable coordinate 
transformations. 
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3. Non-integrable coordinate transformations 

We shall work in the coordinate basis representation throughout this paper. In the coordinate 
basis induced by the 'Cartesian-like' coordinates q' of the flat state space of quasi- 
linear domains, the metric components e i j  are constant. Now consider the coordinate 
transformation q' + q" where 
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We have deliberately used indices from the beginning of the alphabet, reserving the middle 
alphabet letters for the Cartesian-like coordinate representation. The coefficients e',(@) are 
called basis tetrads and are state dependent. The metric in the new coordinate basis induced 
by q' thus becomes 

. .  
e.6 = e ,  = e'&. (3 2 

eiUei, = ai' ei,,etb = 6:. (3.3) 

r,; = eickib,o = - e'bei',u 

As is obvious, indices a ,  b, c ,  . . . (i, j ,  k, . . .) are raised and lowered by e.6 (& j ) .  The 
mapping in (3.1) is invertible and the reciprocal tetrads satisfy 

The connection coefficients (which obviously vanish in the Cartesian-like coordinates) are 
defined for the new coordinate system in the usual manner by 

(3.4) 
where the last equality follows from (3.3). Clearly, a trivial coordinate transformation, i.e. a 
transformation for which q'(q") together with its derivatives are smooth and single-valued, 
cannot change the intrinsic propertie of the state space. In particular, it cannot generate 
curvature nor torsion. For instance, if the mapping q'(q') is smooth and single-valued, it 
is integrable in the sense, that the Schwarz's integribility condition is satisfied, namely 

( 3 . 5 ~ )  (a,& - &a") qi(qL1) = 0. 
This implies that the connection (3.4) is symmetric, i.e. r,; = rbvC and' the mapping 
canies no torsion. We shall impose ( 3 . 5 ~ )  on our mapping because we do not want torsion. 
However, we demand that our transformation be non-integrable in the sense that 

(3.5b) 

i.e. we demand that the first derivatives of the coordinate transformation q'(q") should 
violate the integrability condition for smoothness and single-valuedness. In this manner we 
generate curvature, because according to its usual definition in terms of the basis tetrads, 
the curvature tensor will be given by 

(3.6) 
Having avoided introducing torsion into the state space, the connections (3.4) and the 
curvature tensor (3.6) are just the Riemannian connections (Christoffel's symbols) and the 
Riemannian curvature, respectively. Working out the derivatives in (3.6), one can re-write 
the curvature tensor (3.6) in the equivalent form involving connections (3.4) 

(3.7) 

Roc = Rubc R = Pc Rae = R,U (3.8) 

(%ab - ab&) e'&") # 0 

Rub: = eid (&ab - ab&) d,(q') # 0 

R~~~ = r bc .U - r a t , b  - + r b / r e . d  

Let us also define here the Ricci tensor RUC and the scalar curvature R according to 

which we shall need later. 
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The non-integrable transformation (for which 4'(4") is integrable~ while its first 
derivatives eia(qo) are not) envisaged in this section, carries a~flat state space region into 
a curved one. We shall use it to transform both the thermodynamic Lagrangian and the 
measure of the Cartesian-like path integral in (2.5) to the curved configuration space of 
nonlinear regimes. 

4. Ransformation of the flat configuration space Lagrangian 

The normalization condition (2.5), being an invariant property, must remain valid when 
properly transformed to a state space with curvature. Let us focus first on the transformation 
of the thermodynamic Lagrangian in (2.3). It must be transformed in such a manner that~the 
new Lagrangian remains a prepoint Lagrangian, evaluated at the prepoint of the transformed 
interval Aq&. Thus we write, under our non-integrable mapping 

qf,) = qi(& = qi(& + A4&) = + Aq&eia(,,.+ 

1 1 b 
- +-A4~~)AqP")e ' , ,b (n-1)  2! + 3?A4P")A4(,)A4C~)e'.,b,(.-l) + ' " 

that is 

having used (3.4). (Had we startedfrom 4fn,-I) = q'(qTn) - Aq&), we would have obtained 
a postpoint expansion for A& evaluated at q:n,, suitable for a postpoint Lagrangian). Also 

where, of course, x. = $S(q') is the thermodynamic force in the curved state space. , 

Hence 

X i  = eiax. (4.2) 

x i ,?  = e i b a b ( e j " & )  = enb(Xa.b  - r , d X c )  . 
However, the last expression is just the usual definition of the covariant derivative which 
we denote by a semicolon (;), so that 

(4.3) 
Substituting results (4.1t(4.3) in (2.3) yields via (3.2) for the transformed (discretized) 
Lagrangian 

x l  . I  . = x", . 

m & - l ) ?  4;")) + W4&,)> $3 
1 b b k 

= -&b(n-1)(A.4Tn) - E X & , ) ) ( A q ( n )  - € X ( o - i ) )  + ~ X y ~ ( ~ - i )  + ff'(Aq&) 4€* 
(4.44 

where 

Hf(A5'Tn)) - 4 6 ( r b : X ~ ) ( n - 1 ) A 4 ~ ) A 4 & )  + ;i;sr~be(.-IJAq?)A4$)A4m) b 1 1 

(4.46) 
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which clearly has the prepoint form. In the above rob,$ = & d r a t  is the Christoffel's symbol 
of the first kind. Equation (4.4~) gives, in fact, only a part of the desired Lagrangian 
in the curved thermodynamic configuration space of far from equilibrium situations. As 
we shall show in the next section, proper transformation of the integration measure in 
the normalization condition (2.5) will yield another contribution to the thermodynamic 
Lagrangian which depends on the scalar curvature. 
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5. Path integration measure in the curved state space of nonlinear domains 

A crucial step in our derivation of the nonlinear conditional probability is the systematic 
transformation of the integration measure in (2.5). To this end, we first replace the 
integration volume in (2.5) by d'Aq& as in (2.41, so that the normalization condition 
becomes 

1 = W,(q',  t ;  $, t') d'q' s 

These integrals are obviously to be performed successively over A q t  = qin) with 
fixed 41,) (a consequence of backward time developement, just as in (2.4)). Using (4.1) one 
can now transform the integration volume d'A& to curved state space according to 

d'A& = J",A d'Q& (5.2) 
with the Jacobian +In,"-, = a(A&)/a(Aq&) given by 

Jw-I = det(e[b& det {s,b+r,cbA4f,)+~[r(~db.~)+r,(,br;d:lAqf,)Aq~)+ .. .In-,) . 
Here parentheses around indices denotes their symmetrization, e.g. 

b 
r(db.e, = $ r a d  .c + rdcb," + rcub.d) ' 

Using the well known identity 

det(l+B)=exp(tr[ln(l+B)])=exp 

the above Jacobian reduces to 

(5.3) 

(5.4a) 

where the final equality follows from (3.2) with L' = det(Pb), and 

A&, clearly contributes to the thermodynamic action. Now since q& is fixed in successive 
integrations over A@, (refer to the~remark made after equation (5.1)). we write the 
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conhibution of L'(q$-,) in (5 .4~)  in terms of L'(q&) keeping in mind that we want 
all the coefficients to be evaluated at the prepoint These terms will then also contribute, 
as we shall see shortly, to the prepoint action. Thus we write, under QUI non-integrable 
coordinate transformation 

ei.(n) = ei,(qP.-l) + A&) 

(5.5~)  

where . ,  

(SSb) b b 
$,A = rnb?"-1)Aq(*) + Iru;.c(n-l)A4~n)A4f") +" ' . '  

Substitution of (5 .5~)  in (5.4~) leads via (5.2) to 

It is clear that if our mapping were integrable, then ei(a,bc) = e'+ and the index 
symmetrization in (5.4b) would become redundant. implying A;,n-, = AZ,n-I. Therefore, 
in view of (5.6). as far as hivial coordinate transformations are concerned, one could have 
used the naive transformation of the measure in (2.5) based on 

which follows directly from (3.1). 
consideration, it follows from (5.46) and (5.5b) that to the lowest order 

A&] - = -iRbe(n-~)Aq(~)A¶() 

However, for the non-integrable mapping under 

-< b 

with the Ricci tensor defined by (3.8). Substituting this in (5.6) yields via (5.1) for the 
transformed normalization condition 

1 = / W,(qa, t; 4'0, t') d'q' 

- i R d q : a )  - Aq&))Aq&Aq&)) (5.7) 

with q" = q:o) and q'" = and C> given by (4.44, of course. The appearance 
of the curvature term in the above is a manifestation of the non-integrable coordinate 
transformation. This term, being evaluted at the prepoint, gives the overall contribution 
to the effective thermodynamic Lagrangian and may be calculated perturbatively in the 
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standard manner, as follows. In (5.7) we expand the exponential and write each single 
integral as 
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where 

is the Gaussian part of the action eL>(q& -A&, q t , ) .  Evaluating the above integral using 
the well known results for Gaussian moments (listed in the appendix) gives the expression 
(1 - ( k / 3 ) ~ R ( , )  + O(G~)) with the scalar curvature R defined as in (3.8). This can also be 
thought of as coming from an integral 

Thus equation (5.7) reduces to 

1 = W&', t ;  $, t') d'q' s 

Finally, restoring the integration volume d'q&, we get 

This may be written in the continuum limit as 

(5.94 

where, as usual, the notation for the measure is symbolic and 

is the thermodynamic Lagrangian in the curved configuration space of far from equilibrium 
situations. Our result (5.9a,b) for the conditional probability agrees, upto differences in 
notation, with that obtained by Grabert and Green via stochastic considerations. 
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6. The Fokker-Plan& equation in curved configuration space 

We shall now use the path integral representation of the previous section to derive the 
Fokker-Planck equation in the curved state space of nonlinear irreversible processes. First, 
we shall c a s  the nonlinear conditional probability in a form suitable for our purpose. 

We have from (5.2) and (5.44 that 

Substituting this together with (4.4~) in the normalization condition (5.1), gives the 
transformed conditional probability in the form 

so that the short-time conditional probability becomes 

where, of course as before, qn = qyo). Now the system evolves backward in time according 
to 

Q(q",t) =/W<(g',t:gf;,.tl) Q(q&.ti) d'q& 

which can be written, on using (6.1) and (4.4a, b), as 

is the Gaussian part of eL: in (6.1) as prescribed by (4.4a). We proceed by expanding 
I'(Aq&) in terms of A@,). thereby reducing the integral in (6 .2~)  to a summation involving 
various Gaussian moments which are then to be evaluated in a straightforward manner. In 
this expansion, we need only keep terms which will finally contribute linearly in E as higher 
order terms will be seen to vanish in the limit E -+ 0. Since there is no risk of confusion, 
we drop suffices for simplicity so that 

I'(A4') = [Q(q',t+E)+Aq"a,Q(qu,t + E ) + ~ h q Y A q h a " a b Q ( q ' , f + ~ ) ]  
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r"bcrd~jAqUA4bAqCAqdAqLAqf +HOT. 
1 +- 32eZkZ 1 

Denoting the second bracket collectively by [...I, the above can be further reduced to 
IE(Aq") = Q(qn, t + E ) [ .  . + Aqd + ra/AqbAqd - -rubcAqYAqbAqcAqd) 1 

46k 

(6.3) 
These are all the terms that contribute linearly in E ,  after having computed the Gaussian 
moments as prescribed by ( 6 . 2 ~ ) .  To this end, we invoke the results of the appendix again 
to obtain 

( 
XadQ(qa,t + E ) +  $AqUAqba.ab~(q",t +€)+HOT.  

Q(q", t )  = lim[Q(q'. t + c) + c(xC - k Pbr,F) 8J2(qU, t + E )  
6-0 

+ck eabaoabs2(qo, t + E )  + o(&] 
or 

-&Q(qy, t )  = ( k  f'b8aai, + ( x C  - k P"'r,{) &] Q(q", t ) .  (6.4) 
This is sometimes called the backward Kolmogorov equation. The equivalence of (6.4) 
with the forward Kolmogorov equation (the Fokker-Planck equation) 

&Q(q", t )  = k &ab(PbQ(q", t ) )  - 3, [ ( x "  - k t"*r,:) Q(q'. t ) ]  (6.5) 
is well known [Ill.  Using the prepoint form for the action, one can only derive the 
backward equation systematically. The Fokker-Planck equation cannot be obtained directly 
but only through invoking the well known equivalence between the solutions of the two 
equations [I l l .  

Our Fokker-Planck equation (6.5) coincides with that quoted by Grabert and Green. 
However, the lack of distinction between the forward and backward time evolution makes 
their work less systematic in this respect. 

Appendix. Gaussian moments 

These, denoted below by (. . .), are given by 
1 

(1) = {L(4376kY}-''' d'Aq' exp - Eij(Aqi - 6xi)(Aqi - 6 x j )  s 146k 

(Aqi) = E X '  

(Aq'Aqj) = 26k t i j  + 6' x ' x j  

(Aq'l Aq'Z . . . Aqh-1) = x(Aq' lAqi2 )  . . . (Aq'Z"-lAq'"-t)(Aqh"-l) 

(Aq" Aq". . . @'I") = ~ ( A q i 1 A q h ) .  . . (A4'b-L A @ ) .  

Here, summation is over all possible combinations of such terms 
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